Designing for the phase change: Local communities and shared infrastructure

Pink crystal.
Image via Wikipedia

Michael Nielsen‘s talk at Science Online was a real eye opener for many of us who have been advocating for change in research practice. He framed the whole challenge of change as an example of a well known problem, that of collective action. How do societies manage big changes when those changes often represent a disadvantage to many individuals, at least in the short term. We can all see the global advantages of change but individually acting on them doesn’t make sense.

Michael placed this in the context of other changes, that of countries changing which side of the road they drive on, or the development of trade unions, that have been studied in some depth by political economists and similar academic disciplines. The message of these studies is that change usually occurs in two phases. First local communities adopt practice (or at least adopt a view that they want things changed in the case of which side of the road they drive on) and then these communities discover each other and “agglomerate”, or in the language of physical chemistry there are points of nucleation which grow to some critical level and then the whole system undergoes a phase change, crystallising into a new form.

These two phases are driven by different sets of motivations and incentives. At a small scale processes are community driven, people know each other, and those interactions can drive and support local actions, expectations, and peer pressure. At a large scale the incentives need to be different and global. Often top down policy changes (as in the side of the road) play a significant role here, but equally market effects and competition can also fall into place in a way that drives adoption of new tools or changes in behaviour. Think about the way new research techniques get adopted: first they are used by small communities, single labs, with perhaps a slow rate of spread to other groups. For a long time it’s hard for the new approach to get traction, but suddenly at some point either enough people are using it that its just the way things are done, or conversely those who are using it are moving head so fast that everyone else has to pile in just to keep up. It took nearly a decade for PCR for instance to gain widespread acceptance as a technique in molecular biology but when it did it went from being something people were a little unsure of to being the only way to get things done very rapidly.

So what does this tell us about advocating for, or designing for, change. Michael’s main point was that narrow scope is a feature, not a bug, when you are in that first phase. Working with small scale use cases, within communities is the way to get started. Build for those communities and they will become your best advocates, but don’t try to push the rate of growth, let it happen at the right rate (whatever that might be – and I don’t really know how to tell to be honest). But we also need to build in the grounding for the second phase.

The way these changes generally occur is through an accidental process of accretion and agglomeration. The phase change crystallises out around those pockets of new practice. But, to stretch the physical chemistry analogy, doesn’t necessarily crystallise in the form one would design for. But we have an advantage, if we design in advance to enable that crystallisation then we can prepare communities and prepare tooling for when it happens and we can design in the features that will get use closer to the optimum we are looking for.

What does this mean in practice? It means that when we develop tools and approaches it is more important for our community to have standards than it is for there to be an effort on any particular tool or approach. The language we use, that will be adopted by communities we are working with, should be consistent, so that when those communities meet they can communicate. The technical infrastructure we use should be shared, and we need interoperable standards to ensure that those connections can be made. Again, interchange and interoperability are more important than any single effort, any single project.

If we really believe in the value of change then we need to get these things together before we push them too hard into the diverse set of research communities where we want them to take root. We really need to get interoperability, standards, and language sorted out before the hammer of policy comes down and forces us into some sort of local minimum. In fact, it sounds rather like we have a collective action problem of our own. So what are we going to do about that?

Enhanced by Zemanta

What Russel Brand and Jonathan Ross can teach us about the value of community norms

For anyone in the UK who lives under a stone, or those people elsewhere in the world who don’t follow British news, this week there has been at least some news beyond the ongoing economic crisis and a U.S. election. Two media ‘personalities’ have been excoriated for leaving what can only be described as crass and offensive messages on an elderly actor’s answer phone, while on air. What made the affair worse was that the radio programme was in fact recorded and someone, somewhere, made a decision to broadcast it in full. Even worse was the fact that the broadcaster was that bastion of British values, the BBC.

If you want to get more of the details of what exactly happened then do a search on their names, but what I wanted to focus on here was some of the public and institutional reactions and their relation to the presumed need within the science community for ‘rules’, ‘licences’, and ‘copyright’ over works and data. Consistently we try to explain why this is not a good approach and developing strong community norms is better [1, 2]. I think this affair gives an example of why.

Much of the media and public outcry has been of the type ‘there must be some law, or if not some BBC rule that must have been broken, bang them up!’ There is a sense that there can only be recourse if someone has broken a rule. This is quite similar to the sense amongst many researchers, that they will only be able to ‘protect’ the results they make public by making them available under an explicit licence. That the only way they can have any recourse against someone ‘misusing’ ‘their’ results is if they are able to show that they have broken the terms of a licence.
The problem with this, as we know, is two-fold. First if someone does break the terms of the licence then frankly your chance of actually doing anything about it is pretty minimal. Secondly, and more importantly from the perspective of those of us interested in re-use and re-purposing, we know that pretty much any licensing system will create incompatibilities that prevent combining datasets, or using them in new ways, even when that wasn’t the intention of the original licensor.

There is an interesting parallel here with the Brand/Ross affair. It is entirely possible that no laws, or even BBC rules, have been broken. Does this mean they get off scott free? No, Brand has resigned and Ross has been suspended with his popular Friday night TV show apparently not to be recorded this week. The most interesting thing about the whole affair is that the central failure at the BBC was an editorial one. Some, so far unnamed, senior editor signed off and allowed the programme to be broadcast. What should have happened was that this editor should have blocked the programme or removed the offending passages. Not because a rule was broken but because it was not appropriate for the BBC’s editorial standards. Because it violated the community norms of what is acceptable for the BBC to broadcast. Whether or not they broke any rules what was done was crass and offensive. Whether or not someone is technically in violation of a data re-use license, failing to provide adequate attribution to the generators of that dataset is equally crass and unacceptable behaviour.

What the BBC discovered was that when it doesn’t live up to the standards that the wider community expects of it, that it receives withering censure. Indeed much of the most serious criticism came from some of its own programmes. It was the voice of the wider community (as mediated through the mass media admittedly) which has lead to the resignation and suspension. If it were just a question of ‘rules’ it is entirely possible that nothing could have been done. And if rules were put in place that would have prevented it then the unintended consequence would almost certainly have been to block programmes that had valid dramatic or narrative reasons for carrying such a passage. Again, community censure was much more powerful than any tribunal arbitrating some set of rules.

Yes this is nuanced, yes it is difficult to get right, and yes there is the potential for mob rule. That is why there is a team of senior professional editors at the BBC charged with policing and protecting the ‘community norms’ of what is acceptable for the BBC brand. That is why the damage done to the BBC’s brand will be severe. Standards, where it is explicit that the spirit is applied rather than the letter, where there are grey areas, can be much more effective than legalistic rules. When someone or some group clearly steps outside of the bounds then widespread censure is appropriate. It is then for individuals and organisations to decide how to apply that censure. And in turn to expect to be held to the same standards.

The cheats will always break the rules. If you use legalistic rules, then you invite legalistic approaches to getting around them. Those that try to apply the rules properly will then be hamstrung in their attempts to do anything useful while staying within the letter of the law. Community norms and standards of behaviour, appropriate citation, respect for people’s work and views, can be much more effective.

  1. Wilbanks, John. The Control Fallacy: Why OA Out-Innovates the Alternative. Available from Nature Precedings <http://hdl.handle.net/10101/npre.2008.1808.1> (2008)
  2. Wilbanks, John. Chemspider: Good intentions and the fog of licensing. http://network.nature.com/people/wilbanks/blog/2008/05/10/chemspider-good-intentions-and-the-fog-of-licensing (2008)

A personal view of Open Science – Part IV – Policies and standards

This is the fourth and final part of the serialisation of a draft paper on Open Science. The other parts are here – Part IPart IIPart III

A question that needs to be asked when contemplating any major change in practice is the balance and timing of ‘bottom up’ versus ‘top-down’ approaches for achieving that change. Scientists are notoriously un-responsive to decrees and policy initiatives but as has been discussed they are also inherently conservative and generally resistant to change led from within the community as well. For those advocating the widespread, and ideally rapid, adoption of more open practice in science it will be important to strike the right balance between calling for mandates and conditions for funding or journal submission and of simply adopting these practices in their own work. While the motivation behind the adoption of data sharing policies by funders such as the UK research councils is to be applauded it is possible for such intiatives to be counterproductive if the policies are not supported by infrastructure development, appropriate funding, and appropriate enforcement. Equally, standards and policy statements can send a powerful message on the aspirations of funders to make the research they fund more widely available and, for the most part, when funders speak, scientists listen.

One Approach for Mainstream Adoption – The fully supported paper

There are two broad approaches to standards that are currently being discussed. The first of these is aimed at mainstream acceptance and uptake and can be described as ‘The fully supported paper’. This is a concept that is simple on the surface but very complex to implement in practice. In essence it is the idea that the claims made in a peer reviewed paper in the conventional literature should be fully supported by a publically accessible record of all the background data, methodology, and data analysis procedures that contribute to those claims. On one level this is only a slightly increased in requirements from the Brussels Declaration made by the Internaional Association of Scientific, Technical, and Medical Publishers in 2007 which states;

Raw research data should be made freely available to all researchers. Publishers encourage the public posting of the raw data outputs of research. Sets or sub-sets of data that are submitted with a paper to a journal should wherever possible be made freely accessible to other scholars

http://www.stm-assoc.org/brussels-declaration/

The degree to which this declaration is supported by publishers and the level to which different journals require their authors to adhere to it is a matter for debate but the principle of availability of background data has been accepted by a broad range of publishers. It is therefore reasonable to consider the possibility of making the public posting of data as a requirement for submission. At a simple level this is already possible. For specific types of data repositories already exist and in many cases most journals require submission of these data types to recognised respositories. More generally it is possible to host data sets in some institutional repositories and with the expected announcement of a large scale data hosting service from Google the argument that this is not practicable is becoming unsustainable. While such datasets may have limited discoverability and limited metadata, they will at least be discoverable from the papers that reference them. It is reasonable to expect sufficent context to be provided in the published paper to make the data useable.

However the data itself, except in specific cases, is not enough to be useful to other researchers. The detail of how that data was collected and how it was processed are critical for making a proper analysis of whether the claims made in a paper to be properly judged. Once again we come to the problem of recording the process of research and then presenting that in a form which is both detailed enough to be widely useful but not so dense as to be impenetrable. The technical challenges of delivering a fully supported paper are substantial. However it is difficult to argue that this shouldn’t be available. If claims made in the scientific literature cannot be fully verified can they be regarded as scientific? Once again – while the target is challenging – it is simply a proposal to do good science, properly communicated.

Aspirational Standards – celebrating best practice in open science

While the fully supported paper would be a massive social and technical step forward it in many ways is no more open than the current system. It does not deal with the problem of unpublished or unsuccessful studies that may never find a home in a traditional peer reviewed paper. As discussed above the ‘fully supported paper’ is not really ‘open science’; it is just good science. What then are the requirements, or standards for ‘open science’. Does there need to be a certificate or a set of requirements that need to be met before a project, individual, or institution can claim they are doing Open Science. Or is Open Science simply too generic and prone to misinterpretation?

I would argue that while ‘Open Science’ is a very generic term it has real value as a rallying point or banner. It is a term which generates significant positive reaction amongst the general public, the mainstream media, and large sections of the research community. Its very vagueness also allows some flexibility making it possible to welcome contributions from publishers, scientists, and funders which while not 100% open are nonetheless positive and helpful. Within this broad umbrella it is then possible to look at defining or recomending practices and standards and giving these specific labels for identification.

The main work in the area of defining relevant practices and standards has been carried out by Science Commons and the Open Knowledge Foundation. Science Commons have published four ‘Principles for Open Science‘ which focus on the availability and accessiblity of published literature, research tools, and data, and the development of cyberinfrastructure to make this possible. These four principles currently do no explicitly include the availability of process, which has been covered in detail above, but provide a clear set of criteria which could form the basis of standards. Broadly speaking research projects, individuals, or institutions that deliver on these principles could be said to be doing Open Science. The Open Knowledge Definiton, developed by the Open Knowledge Foundation, is another useful touchstone here. Another possible defining criterion for Open Science is that all the relevant material is made available under licenses that adhere to the definition.

The devil, naturally, lies in the details. Are embargoes on data and methodology appropriate, and if so, in what fields and how should they be constructed? For data that cannot be released should specific exceptions be made, or special arrangments made to hold data in secure repositories? Where the same group is doing open and commercial research how should the divisions between these projects be defined and declared? These details are important, and will take time to work out. In the short term it is therefore probably more effective to identify and celebrate examples of open science, define best practice and observe how it works (and does not work) in the real world. This will raise the profile of Open Science without making it immediately an exclusive preserve of those with the luxury of radically changing practice. It enables examples of best practice to be held up as aspirational standards, providing the goals for others to work towards, and the impetus for the tool and infrastructure development that will support them. Many government funders are starting to introduce data sharing mandates, generally with very weak wording, but in most cases these refer to the expectation that funded research will adhere to the standard of ‘best practice’ in the relevant field. At this stage of development it may be more productive to drive adoption throgh the strategic support of improving best practice in a wide range of fields than to attempt to define strict standards.

Summary

The community advocating more open practice in scientific research is growing in size and influence. The major progress made in the past 12-18 months by the Open Access movement and the development of deposition and data sharing mandates by a range of research funders show that real progress is being made in increasing access to both the finished products of research and the materials that support them. While there have been significant successes this remains a delicate moment. There is a risk of over enthusiasm driving expectations which cannot be delivered and of alienating the mainstream community that we wish to draw in. The fears and concerns of researchers in widening access to their work need to be addressed sensitively and seriously, pointing out the benefits but also acknowledging the risks involved in adopting these practices.

It will not be enough to develop tools and infrastructure that, if adopted, would revolutionize science communication. Those tools must be built with an understanding of how scientists work today, and with the explicit aim of embedding these tools in existing workflows. The need for, and the benefits of, adopting controlled vocabularies needs to be sold much more effectively to the mainstream scientific community. The ontologies community also needs to recognise that there are cases and areas where the use of strict controlled vocabularies is not appropriate. Web 2.0 and Semantic web technologies are not competitors but are complementary approaches that are appropriate in different contexts. Again, the right question to ask is ‘what do scientists do? And what can we do to make that work better?’; not how can we make scientists see they need to do things the ‘right’ way.

Finally, it is my belief that now is not the time to set out specific and strict standards of what qualifies as Open Science. It is the right time to discuss the details of what these standards might look like. It is the right time to look at examples of best practice; to celebrate these and to see what can be learnt from them, but with our current lack of experience, and lack of knowledge of what the unintended consequences of specific standards might be, it is too early to pin down the details of those standards. It is a good time to be clearly articulating the specific aspirations of the movement, and to provide goals that communities can aggregate around; the fully supported paper, the Science Commons principles, and the Open Knowledge Definition are all useful starting points. Open Science is gathering momentum, and that is a good thing. But equally it is a good time to take stock, identify the best course forward, and make sure that we ar carrying as many people forward with use as we can.

The Southampton Open Science Workshop – a brief report

On Monday 1 September we had a one day workshop in Southampton discussing the issues that surround ‘Open Science’. This was very free form and informal and I had the explicit aim of getting a range of people with different perspectives into the room to discuss a wide range of issues, including tool development, the social and career structure issues, as well as ideas about standards and finally, what concrete actions could actually be taken. You can find live blogging and other commentary in the associated Friendfeed room and information on who attended as well as links to many of the presentations on the conference wiki.

Broadly speaking the day was divided into three chunks, the first was focussed on tools and services and included presentations on MyExperiment, Mendeley, Chemtools, and Inkspot Science. Branwen Hide of Research Information Network has written more on this part. Given that the room contained more than the usual suspects the conversation focussed on usability and interfaces rather than technical aspects although there was a fair bit of that as well.

The second portion of the day revolved more around social challenges and issues. Richard Grant presented his experience of blogging on an official university sanctioned site and the value of that for both outreach and education. One point he made was that the ‘lack of adoption problem’ seen in science just doesn’t seem to exist in the humanities. Perhaps this is because scientists don’t generally see ‘writing’ as a valuable thing in its own right. Certainly there is a preponderance of scientists who happen also to see themselves as writers on Nature Network.

Jennifer Rohn followed on from Richard, and objected to my characterising her presentation as “the skeptic’s view”. A more accurate characterisation would have been “I’d love to be open but at the moment I can’t: This is what has to change to make it work”. She presented a great summary of the proble, particularly from the biological scientist’s point of view as well as potential solutions. Essentially the problem is that of the ‘Minimum Publishable Unit’ or research quantum as well as what ‘counts’ as publication. Her main point was that for people to be prepared to publish material that falls short of a full paper they need to get some proportional credit for that. This folds closely into the discussion of what can be cited and what should be cited in particular contexts. I have used the phrase ‘data sized peg into a paper shaped hole’ to describe this in the past.

After lunch Liz Lyon from UKOLN talked about curation and long term archival storage which lead into an interesting discussion about the archiving of blogs and other material. Is it worth keeping? One answer to this was to look at the real interest today in diaries from the second world war and earlier from ‘normal people’. You don’t necessarily need to be a great scientist, or even a great blogger, for the material to be of potential interest to historians in 50-100 years time. But doing this properly is hard – in the same way that maintaining and indexing data is hard. Disparate sites, file formats, places of storage, and in the end whose blog is it actually? Particularly if you are blogging for, or recording work done at, a research institution.

The final session was about standards or ‘brands’. Yaroslav Nikolaev talked about semantic representations of experiments. While important it was probably a shame in the end we did this at the end of the day because it would have been helpful to get more of the non-techie people into that discussion to iron out both the communication issues around semantic web as well as describing the real potential benefits. This remains a serious gap – the experimental scientists who could really use semantic tools don’t really get the point, and the people developing the tools don’t communicate well what the benefits are, or in some cases (not all I hasten to add!) actually build the tools the experimentalists want.

I talked about the possibility of a ‘certificate’ or standard for Open Science, and the idea of an organisation to police this. It would be safe to say that, while people agreed that clear definitions would be hepful, the enhusiasm level for a standards organisation was pretty much zero. There are more fundamental issues of actually building up enough examples of good practice, and working towards identifying best practice in open science, that need to be dealt with before we can really talk about standards.

On the other hand the idea of ‘the fully supported’ paper got immediate and enthusiastic support. The idea here is deceptively simple, and has been discussed elsewhere; simply that all the relevant supporting information for a paper (data, detailed methodology, software tools, parameters, database versions etc. as well as access to required materials at reasonable cost) should be available for any published paper. The challenge here lies in actually recording experiments in such a way that this information can be provided. But if all of the record is available in this form then it can be made available whenever the researcher chooses. Thus by providing the tools that enable the fully supported paper you are also providing tools that enable open science.

Finally we discussed what we could actually do: Jean-Claude Bradley discussed the idea of an Open Notebook Science challenge to raise the profile of ONS (this is now setup – more on this to follow). Essentially a competition type approach where individuals or groups can contribute to a larger scientific problem by collecting data – where the teams get judged on how well they describe what they have done and how quickly they make it available.

The most specific action proposed was to draft a ‘Letter to Nature’ proposing the idea of the fully supported paper as a submission standard. The idea would be to get a large number of high profile signatories on a document which describes  a concrete step by step plan to work towards the final goal, and to send that as correspondence to a high profile journal. I have been having some discussions about how to frame such a document and hope to be getting a draft up for discussion reasonably soon.

Overall there was much enthusiasm for things Open and a sense that many elements of the puzzle are falling into place. What is missing is effective coordinated action, communication across the whole community of interested and sympathetic scientsts, and critically the high profile success stories that will start to shift opinion. These ought to, in my opinion, be the targets for the next 6-12 months.

Open Science Workshop at Southampton – 31 August and 1 September 2008

Southampton, England, United-Kingdom

Image via Wikipedia

I’m aware I’ve been trailing this idea around for sometime now but its been difficult to pin down due to issues with room bookings. However I’m just going to go ahead and if we end up meeting in a local bar then so be it! If Southampton becomes too difficult I might organise to have it at RAL instead but Southampton is more convenient in many ways.

Science Blogging 2008: London will be held on August 30 at the Royal Institution and as a number of people are coming to that it seemed a good opportunity to get a few more people together to have a get together and discuss how we might move things forward.  This now turns out to be one of a series of such workshops following on from Collaborating for the future of open science, organised by Science Commons as a satellite meeting of EuroScience Open Forum in Barcelona next month, BioBarCamp/Scifoo from 5-10 August and a possible Open Science Workshop at Stanford on Monday 11 August, as well as the Open Science Workshop in Hawaii (can’t let the bioinformaticians have all the good conference sites to themselves!) at the Pacific Symposium on Biocomputing.

For the Southampton meeting I would propose that we essentially look at having four themed sessions: Tools, Data standards, Policy/Funding, and Projects. Within this we adopt an unconference style where we decide who speaks based on who is there and want to present something. My ideas is essentially to meet on the Sunday evening at a local hostelry to discuss and organise the specifics of the program for Monday. On the Monday we spend the day with presentations and leave plenty of room for discussion. People can leave in the afternoon, or hang around into the evening for further discussion. We have absolutely zero, zilch, nada funding available so I will be asking for a contribution (to be finalised later but probably £10-15 each) to cover coffee/tea and lunch on the Monday.

Zemanta Pixie