“Friendfeeds for Science” pt II – Design ideas for a research focussed aggregator

Who likes me on friendfeed?
Image by cameronneylon via Flickr

This post, while only 48 hours old is somewhat outdated by these two Friendfeed discussions. This was written independently of those discussions so it seemed worth putting out in its original form rather than spending too much time rewriting.

I wrote recently about Sciencefeed, a Friendfeed like system aimed at scientists and was fairly critical. I also promised to write about what I thought a “Friendfeed for Researchers” should look like. To look at this we need to think about what Friendfeed, and other services including Twitter, Facebook, and Posterous are used for and what else they could do.

Friendfeed is an aggregator that enables, as I have written before, an “object-centric” means of interacting around those objects. As Alan Cann has pointed out this is not the only thing it does, also enabling the person-centric interactions that I see as more typical of Facebook and Twitter. Enabling both is important, as is the realization that all of these systems need to interoperate effectively with each other, something which is still evolving. But core to the development of something that works for researchers is that standard research objects and particularly papers, need to be first class objects. Author lists, one click to full text, one click to bookmark to my library.

Functionality 1: Treat research objects as first class citizens with special attention, start with journal papers and support for Citeulike/Zotero/Mendeley etc.

On top of this Friendfeed is a community, or rather several interlinked communities that have their own traditions, standards, and expectations, that are supported to a greater or lesser extent by the functionality of rooms, search, hiding, and administration found within Friendfeed. Any new service needs to understand and support these expectations.

Friendfeed also doesn’t so some things. It is not terribly effective as a bookmark tool, nor very good as tool for identifying and mining for objects or information that is more than a few days old although paradoxically it has served quite well as a means of archiving tweets and exposing them to search engines. The idea of a tool that surfaces objects to Google is an interesting one, and one we could take advantage of.  Granularity of sharing is also limited, what if I want slidesets to be public but tweets to be a private feed? Or to collect different feeds under different headings for different communities, public, domain-specific, and only for the interested specialist?

Finally Friendfeed doesn’t have a very sophisticated karma system.  While likes and comments will keep bringing specific objects (and by extension the people who have brought them in) into your attention stream there is none of the filtering power enabled by tools like StackOverflow. Whether or not such a thing is something we would want is an interesting question but it has the potential to enable much more sophisticated filtering and curation of content. StackOverflow itself has an interesting limitation as well; there is only one rank order of answers, I can’t choose to privelege the upmods of one specific curator rather than another. I certainly can’t choose to order my stream based on a persons upmods but not their downmods.

A user on Friendfeed plays three distinct roles, content author, content curator, and content consumer. Different people will emphasise different roles, from the pure broadcaster, to the pure reader who doesn’t ever interact. The real added value comes from the curation role and in particular enabling granular filtering based on your choice of curators. Curation comes in the form of choosing to push content to Friendfeed from outside servces, from “likes”, and from commenting. Commenting is both curation and authoring, providing context as well as providing new information or opinion. But supporting and validating this activity will be important. Whatever choice is made around “liking” or StackOverflow style up and down-modding needs to apply to comments as well as objects.

Functionality addition 2: Enable rating of comments and by extension, the people making them

If reputation gathering is to be useful in driving filtering functionality as I have suggested we will need good ways of separating content authoring from curation. One thing that really annoys me is seeing an interesting title and a friendly avatar on Friendfeed and clicking through to find something written by someone else. Not because I don’t want to read something written by someone else, but because my decision to click through was based on assumptions about who the author was.  We need to support a strong culture of citation and attribution in research. A Friendfeed for research will need to clearly mark the distinction between who has brought an object into the service, who has curated it, and who authored it. Both should be valued but the roles should be measured separately.

Functionality addition 3: Clearly designate authors and curators of objects brought into the stream. Possibly enable these activities to be rated separately?

If we recognize a role of author, outside that of the user’s curation activity we can also enable the rating of people and objects that don’t belong to users. This would allow researchers who are not users to build up reputation within the system. This has the potential to solve the “ghost town” phenomonen that plagues most science social networking sites. A new user could be able to claim the author role for objects that were originally brought  in by someone else. This would immediately connect them with other people who have commented on their work, and provide them with a reputation that can be further built upon through taking on curation activities.

This is a sensitive area, holding information on people without their knowledge, but it is something done already across indexing services, aggregation services, and chat rooms. The use of karma in this context would need to be very carefully thought out., and whether it would be made available either within or outside the system would be an important question to tackle.

Functionality addition 4: Collect reputation and comment information for authors who are not users to enable them to rapidly connect with relevant content if they choose to join.

Finally there is the question of interacting with this content and filtering it through the rating systems that have been created. The UI issues for this are formidable but there is a need to enable different views. A streaming view, and more static views of content a user has collected over long periods, as well as search. There is probably enough for another whole post in those issues.

Summary: Overall for me the key to building a service that takes inspiration from Friendfeed but delivers more functionality for researchers, while not alienating a wider potential user base is to build a tool that enables and supports curation rating and granular filtering of content. Authorship is key, as is quantitative measures of value and personal relevance that will enable users to build their own view of the content they are interested in, to collect it for themselves and to continue to curate it for themselves, either on their own or in collaboraton with others.

Reblog this post [with Zemanta]

Friendfeed for Research? First impressions of ScienceFeed

Image representing FriendFeed as depicted in C...
Image via CrunchBase

I have been saying for quite some time that I think Friendfeed offers a unique combination of functionality that seems to work well for scientists, researchers, and the people they want to (or should want to) have conversations with. For me the core of this functionality lies in two places: first that the system explicitly supports conversations that centre around objects. This is different to Twitter which supports conversations but doesn’t centre them around the object – it is actually not trivial to find all the tweets about a given paper for instance. Facebook now has similar functionality but it is much more often used to have pure conversation. Facebook is a tool mainly used for person to person interactions, it is user- or person-centric. Friendfeed, at least as it is used in my space is object-centric, and this is the key aspect in which “social networks for science” need to differ from the consumer offerings in my opinion. This idea can trace a fairly direct lineage via Deepak Singh to the Jeff Jonas/Jon Udell concatenation of soundbites:

“Data finds data…then people find people”

The second key aspect about Friendfeed is that it gives the user a great deal of control over what they present to represent themselves. If we accept the idea that researchers want to interact with other researchers around research objects then it follows that the objects that you choose to represent yourself is crucial to creating your online persona. I choose not to push Twitter into Friendfeed mainly because my tweets are directed at a somewhat different audience. I do choose to bring in video, slides, blog posts, papers, and other aspects of my work life. Others might choose to include Flickr but not YouTube. Flexibility is key because you are building an online presence. Most of the frustration I see with online social tools and their use by researchers centres around a lack of control in which content goes where and when.

So as an advocate of Friendfeed as a template for tools for scientists it is very interesting to see how that template might be applied to tools built with researchers in mind. ScienceFeed launched yesterday by Ijad Madisch, the person behind ResearchGate. The first thing to say is that this is an out and out clone of Friendfeed, from the position of the buttons to the overall layout. It seems not to be built on the Tornado server that was open sourced by the Friendfeed team so questions may hang over scalability and architecture but that remains to be tested. The main UI difference with Friendfeed is that the influence of another 18 months of development of social infrastructure is evident in the use of OAuth to rapidly leverage existing networks and information on Friendfeed, Twitter, and Facebook. Although it still requires some profile setup, this is good to see. It falls short of the kind of true federation which we might hope to see in the future but then so does everything else.

In terms of specific functionality for scientists the main additions is a specialised tool for adding content via a search of literature databases. This seems to be adapted from the ResearchGate tool for populating a profile’s publication list. A welcome addition and certainly real tools for researchers must treat publications as first class objects. But not groundbreaking.

The real limitation of ScienceFeed is that it seems to miss the point of what Friendfeed is about. There is currently no mechanism for bringing in and aggregating diverse streams of content automatically. It is nice to be able to manually share items in my citeulike library but this needs to happen automatically. My blog posts need to come in as do my slideshows on slideshare, my preprints on Nature Precedings or Arxiv. Most of this information is accessible via RSS feeds so import via RSS/Atom (and in the future real time protocols like XMPP) is an absolute requirement. Without this functionality, ScienceFeed is just a souped up microblogging service. And as was pointed out yesterday in one friendfeed thread we have a twitter-like service for scientists. It’s called Twitter. With the functionality of automatic feed aggregation Friendfeed can become a presentation of yourself as a researcher on the web. An automated publication list that is always up to date and always contains your latest (public) thoughts, ideas, and content. In short your web-native business card and CV all rolled into one.

Finally there is the problem of the name. I was very careful at the top of this post to be inclusive in the scope of people who I think can benefit from Friendfeed. One of the great strengths of Friendfeed is that it has promoted conversations across boundaries that are traditionally very hard to bridge. The ongoing collision between the library and scientific communities on Friendfeed may rank one day as its most important achievement, at least in the research space. I wonder whether the conversations that have sparked there would have happened at all without the open scope that allowed communities to form without prejudice as to where they came from and then to find each other and mingle. There is nothing in ScienceFeed that precludes anyone from joining as far as I can see, but the name is potentially exclusionary, and I think unfortunate.

Overall I think ScienceFeed is a good discussion point, a foil to critical thinking, and potentially a valuable fall back position if Friendfeed does go under. It is a place where the wider research community could have a stronger voice about development direction and an opportunity to argue more effectively for business models that can provide confidence in a long term future. I think it currently falls far short of being a useful tool but there is the potential to use it as a spur to build something better. That might be ScienceFeed v2 or it might be an entirely different service. In a follow-up post I will make some suggestions about what such a service might look like but for now I’d be interested in what other people think.

Other Friendfeed threads are here and here and Techcrunch has also written up the launch.

Reblog this post [with Zemanta]

What should social software for science look like?

Nat Torkington, picking up on my post over the weekend about the CRU emails takes a slant which has helped me figure out how to write this post which I was struggling with. He says:

[from my post...my concern is that in a kneejerk response to suddenly make things available no-one will think to put in place the social and technical infrastructure that we need to support positive engagement, and to protect active researchers, both professional and amateur from time-wasters.] Sounds like an open science call for social software, though I’m not convinced it’s that easy. Humans can’t distinguish revolutionaries from terrorists, it’s unclear why we think computers should be able to.

As I responded over at Radar, yes I am absolutely calling for social software for scientists, but I didn’t mean to say that we could expect it to help us find the visionaries amongst the simply wrong. But this raises a very helpful question. What is it that we would hope Social Software for Science would do? And is that realistic?

Over the past twelve months I seem to have got something of a reputation for being a grumpy old man about these things, because I am deeply sceptical of most of the offerings out there. Partly because most of these services don’t actually know what it is they are trying to do, or how it maps on to the success stories of the social web. So prompted by Nat I would like to propose a list of what effective Social Software for Science (SS4S) will do and what it can’t.

  1.  SS4S will promote engagement with online scientific objects and through this encourage and provide paths to those with enthusiasm but insufficient expertise to gain sufficient expertise to contribute effectively (see e.g. Galaxy Zoo). This includes but is certainly not limited to collaborations between professional scientists. These are merely a special case of the general.
  2. SS4S will measure and reward positive contributions, including constructive criticism and disagreement (Stack overflow vs YouTube comments). Ideally such measures will value quality of contribution rather than opinion, allowing disagreement to be both supported when required and resolved when appropriate.
  3. SS4S will provide single click through access to available online scientific objects and make it easy to bring references to those objects into the user’s personal space or stream (see e.g. Friendfeed “Like” button)
  4. SS4S should provide zero effort upload paths to make scientific objects available online while simultaneously assuring users that this upload and the objects are always under their control. This will mean in many cases that what is being pushed to the SS4S system is a reference not the object itself, but will sometimes be the object to provide ease of use. The distinction will ideally be invisible to the user in practice barring some initial setup (see e.g. use of Posterous as a marshalling yard).
  5. SS4S will make it easy for users to connect with other users and build networks based on a shared interest in specific research objects (Friendfeed again).
  6. SS4S will help the user exploit that network to collaboratively filter objects of interest to them and of importance to their work. These objects might be results, datasets, ideas, or people.
  7. SS4S will integrate with the user’s existing tools and workflow and enable them to gradually adopt more effective or efficient tools without requiring any severe breaks (see Mendeley/Citeulike/Zotero/Papers and DropBox)
  8. SS4S will work reliably and stably with high performance and low latency.
  9. SS4S will come to where the researcher is working both with respect to new software and also unusual locations and situations requiring mobile, location sensitive, and overlay technologies (Layar, Greasemonkey, voice/gesture recognition – the latter largely prompted by a conversation I had with Peter Murray-Rust some months ago).
  10. SS4S will be trusted and reliable with a strong community belief in its long term stability. No single organization holds or probably even can hold this trust so solutions will almost certainly need to be federated, open source, and supported by an active development community.

What SS4S won’t do is recognize geniuses when they are out in the wilderness amongst a population of the just plain wrong. It won’t solve the cost problems of scientific publication and it won’t turn researchers into agreeable, supportive, and collaborative human beings. Some things are beyond even the power of Web 2.0

I was originally intending to write this post from a largely negative perspective, ranting as I have in the past about how current services won’t work. I think now there is a much more positive approach. Lets go out there and look at what has been done, what is being done, and how well it is working in this space. I’ve set up a project on my new wiki (don’t look too closely, I haven’t finished the decorating) and if you are interested in helping out with a survey of what’s out there I would appreciate the help. You should be able to log in with an OpenID as long as you provide an email address. Check out this Friendfeed thread for some context.

My belief is that we are near to position where we could build a useful requirements document for such a beast with references to what has worked and what hasn’t. We may not have the resources to build it and maybe the NIH projects currently funded will head in that direction. But what is valuable is to pull the knowledge together to figure out the most effective path forward.

The science exchange

How do we actually create the service that will deliver on the promise of the internet to enable collaborations to form as and where needed, to increase the speed at which we do science by enabling us to make the right contacts at the right times, and critically; how do we create the critical mass needed to actually make it happen? In another example of blog based morphic resonance there has been a discussion a discussion over at Nature Networks on how to enable collaboration occurred almost at the same time as Pawel Szczeny was blogging on freelance science. I then hooked up with Pawel to solve a problem in my research; as far as we know the first example of a scientific collaboration that started on Friendfeed. And Shirley Wu has now wrapped all of this up in a blog post about how a service to enable collaborations to be identified might actually work which has provoked a further discussion. Continue reading “The science exchange”